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We show that if the coefficients of a polynomial P(z) of degree n are perturbed
by at most t >0, then the order of magnitude of the sup norm of P on the unit
circle is at most multiplied by m1/2

• Furthermore, the polynomials with coefficients
of modulus I of Kahane are used to show that this multiplication effect is
achievable.

In this article we study the effect of the perturbation of the coefficients of
a polynomial P(z) on the sup norm of P on the unit circle. Thus, for e > 0
and any positive integer n, we define an e-perturbation of the (n - 1)st
degree polynomial P(z) = L akzk to be any (n - 1)st degree polynomial
Q(z) = E akbkz k, where (all sums in the paper are from k = 0 to k = n - 1)
the coefficients bk satisfy

(1)

Our task is to estimate the number G = G(e, n) = Sup II QII/IIPII, where 11·11
indicates the sup norm on Iz I= 1, P is any polynomial of degree n - 1 with
IIPII > 0, and Qis in any e-perturbation of P. We show that G is asymptotic
to W l/2 as n ---. 00. More precisely, we prove the following:

THEOREM. Let G be as defined above. Then there is an absolute constant
C> 0 such that 1 + en[/2 - Cw 3/ [°(1og n)[/2 < G ~ 1 +w l/2 .

Proof Applying (1), the Schwarz inequality, and Parseval's identity we
have

which immediately yields the upper bound.
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For the lower bound we clearly want a polynomial P with small sup norm
whose coefficients are roughly equal to each other in modulus. Thus the
polynomials of Kahane [21, which disprove a well-known conjecture of
Erdos [11, are ideally suited to our purpose. Specifically, Kahane has shown
that there is an absolute constant C > 0 such that, for any positive integer n,
there is a polynomial K(z) of degree n - I, with coefficients of modulus I,
satisfying IIK[I <n l

/
2 + Cn 3

/
10 (log n)I/2 (obviously IIKII ~ n l

/
2

, as this is the
L 2 norm of K on the unit circle). We may certainly assume, by a suitable
normalization, that II K II = K( I).

Taking P(z) to be this normalized Kahane polynomial, let eitk, tk real,
denote the coefficients of P, and let bk = I + ee-itk. We then have
Q(z) = P(z) + e L zk, so that II QII = Q( I) = P( I) + en, or

IIQII I n I 1/2 C 3/10lfPiI = + e lfKif > +en - en

and the Theorem is proven.
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