The Sup Norm of a Polynomial with Perturbed Coefficients

J. S. Byrnes
Department of Mathematics, University of Massachusetts, Boston, Massachusetts 02125

Communicated by Oved Shisha
Received August 18, 1980

Abstract

We show that if the coefficients of a polynomial $P(z)$ of degree n are perturbed by at most $t>0$, then the order of magnitude of the \sup norm of P on the unit circle is at most multiplied by $t n^{1 / 2}$. Furthermore, the polynomials with coefficients of modulus 1 of Kahane are used to show that this multiplication effect is achievable.

In this article we study the effect of the perturbation of the coefficients of a polynomial $P(z)$ on the sup norm of P on the unit circle. Thus, for $\varepsilon>0$ and any positive integer n, we define an ε-perturbation of the ($n-1$)st degree polynomial $P(z)=\sum a_{k} z^{k}$ to be any ($n-1$) st degree polynomial $Q(z)=\Sigma a_{k} b_{k} z^{k}$, where (all sums in the paper are from $k=0$ to $k=n-1$) the coefficients b_{k} satisfy

$$
\begin{equation*}
\left|b_{k}-1\right| \leqslant \varepsilon \tag{1}
\end{equation*}
$$

Our task is to estimate the number $G=G(\varepsilon, n)=\operatorname{Sup}\|Q\| /\|P\|$, where $\|\cdot\|$ indicates the sup norm on $|z|=1, P$ is any polynomial of degree $n-1$ with $\|P\|>0$, and Q is in any ε-perturbation of P. We show that G is asymptotic to $\varepsilon n^{1 / 2}$ as $n \rightarrow \infty$. More precisely, we prove the following:

Theorem. Let G be as defined above. Then there is an absolute constant $C>0$ such that $1+\varepsilon n^{1 / 2}-C \varepsilon n^{3 / 10}(\log n)^{1 / 2}<G \leqslant i+\varepsilon n^{1 / 2}$.

Proof. Applying (1), the Schwarz inequality, and Parseval's identity we have

$$
\begin{aligned}
|Q(z)| & =\left|P(z)+\sum a_{k}\left(b_{k}-1\right) z^{k}\right| \leqslant\|P\|+\sum\left|a_{k}\right|\left|b_{k}-1\right| \\
& \leqslant\|P\|+\varepsilon \sum\left|a_{k}\right| \leqslant\|P\|+\varepsilon n^{1 / 2}\left(\sum\left|a_{n}\right|^{2}\right)^{1 / 2} \leqslant\left(1+\varepsilon n^{1 / 2}\right)\|P\|
\end{aligned}
$$

which immediately yields the upper bound.

For the lower bound we clearly want a polynomial P with small sup norm whose coefficients are roughly equal to each other in modulus. Thus the polynomials of Kahane [2], which disprove a well-known conjecture of Erdös [1], are ideally suited to our purpose. Specifically, Kahane has shown that there is an absolute constant $C>0$ such that, for any positive integer n, there is a polynomial $K(z)$ of degree $n-1$, with coefficients of modulus 1 , satisfying $\|K\| \leqslant n^{1 / 2}+C n^{3 / 10}(\log n)^{1 / 2}$ (obviously $\|K\| \geqslant n^{1 / 2}$, as this is the L^{2} norm of K on the unit circle). We may certainly assume, by a suitable normalization, that $\|K\|=K(1)$.

Taking $P(z)$ to be this normalized Kahane polynomial, let $e^{i t_{k}}, t_{k}$ real, denote the coefficients of P, and let $b_{k}=1+\varepsilon e^{-i t_{k}}$. We then have $Q(z)=P(z)+\varepsilon \sum z^{k}$, so that $\|Q\|=Q(1)=P(1)+\varepsilon n$, or

$$
\frac{\|Q\|}{\|P\|}=1+\varepsilon \frac{n}{\|K\|}>1+\varepsilon n^{1 / 2}-C \varepsilon n^{3 / 10} \quad(\log n)^{1 / 2}
$$

and the Theorem is proven.

References

1. P. Erdös, Some unsolved problems, Michigan Math. J. 4 (1957), 291-300.
2. J. P. Kahane, Construction of a polynomial $P_{N}(z)=\sum_{n=1}^{N} \hat{P}_{N}(n) z^{n},\left|\hat{P}_{N}(n)\right|=1$, such that $\sup _{|z|=1}\left|P_{N}(z)\right|=N^{1 / 2}+O\left(N^{3 / 10+\epsilon}\right)$, preprint.
